Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E.
نویسندگان
چکیده
To develop a murine model system to test the role of monocyte-derived macrophage in atherosclerosis, the osteopetrotic (op) mutation in the macrophage colony-stimulating factor gene was bred onto the apolipoprotein E (apoE)-deficient background. The doubly mutant (op/apoE-deficient) mice fed a low-fat chow diet had significantly smaller proximal aortic lesions at an earlier stage of progression than their apoE-deficient control littermates. These lesions in the doubly mutant mice were composed of macrophage foam cells. The op/apoE-deficient mice also had decreased body weights, decreased blood monocyte differentials, and increased mean cholesterol levels of approximately 1300 mg/dl. Statistical analysis determined that atherosclerosis lesion area was significantly affected by the op genotype and gender. The confounding variables of body weight, plasma cholesterol, and monocyte differential, which were all affected by op genotype, had no significant additional effect on lesion area once they were adjusted for the effects of op genotype and gender. Unexpectedly, there was a significant inverse correlation between plasma cholesterol and lesion area, implying that each may be the result of a common effect of macrophage colony-stimulating factor levels. The data support the hypothesis that macrophage colony-stimulating factor and its effects on macrophage development and function play a key role in atherogenesis.
منابع مشابه
Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice.
Previous studies of osteopetrotic (op) mice lacking macrophage colony-stimulating factor (M-CSF) have revealed an inhibition of atherosclerosis development in the apolipoprotein E (apo E)-deficient model and in a diet-induced model. Using LDL receptor-deficient mice, we now show that atheroma development depends on M-CSF concentration, as not only did homozygous osteopetrotic (op/op) mice have ...
متن کاملMacrophage phenotype in mice deficient in both macrophage-colony-stimulating factor (op) and apolipoprotein E.
Mice deficient in both macrophage-colony-stimulating factor (M-CSF, op) and apolipoprotein E (apoE) have elevated cholesterol levels but are protected from atherosclerosis. To assess the contribution of macrophage (Mphi) phenotypic heterogeneity and scavenger receptor (SR-A) expression to this seeming paradox, we characterized the Mphi phenotype by immunohistochemistry in these animals. Lesion ...
متن کاملResveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice
Objective(s):Resveratrol (RES) is a polyphenol compound that has been shown a promising cardioprotective effect. However, some reports have yielded conflicting findings. Herein, we investigated the anti-atherosclerotic effects of RES in apolipoprotein E (apo E)-deficient mice on a high cholesterol diet. Materials and Methods: Firstly, atherosclerosis was induced by feeding a high cholesterol di...
متن کاملGranulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor exacerbate atherosclerosis in apolipoprotein E-deficient mice.
BACKGROUND Recent studies have suggested a potential contribution of bone marrow-derived progenitor cells to vascular repair. Preliminary clinical studies have explored the possibility that mobilization of progenitor cells with granulocyte macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) can affect vascular repair. However, it is not known whether ...
متن کاملRegulation of Csf1r and Bcl6 in macrophages mediates the stage-specific effects of microRNA-155 on atherosclerosis.
OBJECTIVE The function of microRNAs is highly context and cell type dependent because of their highly dynamic expression pattern and the regulation of multiple mRNA targets. MicroRNA-155 (miR-155) plays an important role in the innate immune response by regulating macrophage function; however, the effects of miR-155 in macrophages on atherosclerosis are controversial. We hypothesized that the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 18 شماره
صفحات -
تاریخ انتشار 1995